Solution of Index 2 Implicit Differential-algebraic Equations by Lobatto Runge-kutta Methods

نویسنده

  • Christian Lubich
چکیده

We consider the numerical solution of systems of index 2 implicit differential-algebraic equations (DAEs) by a class of super partitioned additive Runge-Kutta (SPARK) methods. The families of Lobatto IIIA-B-C-C-D methods are included. We show super-convergence of optimal order 2s−2 for the s-stage Lobatto families provided the constraints are treated in a particular way which strongly relies on specific properties of the SPARK coefficients. Moreover, reversibility properties of the flow can still be preserved provided certain SPARK coefficients are symmetric. AMS subject classification: 65L05, 65L06, 65L80, 70F25, 70H45.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrange-d’Alembert SPARK Integrators for Nonholonomic Lagrangian Systems

Lagrangian systems with ideal nonholonomic constraints can be expressed as implicit index 2 differential-algebraic equations (DAEs) and can be derived from the Lagrange-d’Alembert principle. We define a new nonholonomically constrained discrete Lagrange-d’Alembert principle based on a discrete Lagrange-d’Alembert principle for forced Lagrangian systems. Nonholonomic constraints are considered a...

متن کامل

Efficient Runge-Kutta integrators for index-2 differential algebraic equations

In seeking suitable Runge-Kutta methods for differential algebraic equations, we consider singly-implicit methods to which are appended diagonally-implicit stages. Methods of this type are either similar to those of Butcher and Cash or else allow for the importation of a final derivative from a previous step. For these two classes, with up to three additional diagonallyimplicit stages, we deriv...

متن کامل

Specialized Runge-Kutta methods for index 2 differential-algebraic equations

We consider the numerical solution of systems of semi-explicit index 2 differential-algebraic equations (DAEs) by methods based on RungeKutta (RK) coefficients. For nonstiffly accurate RK coefficients, such as Gauss and Radau IA coefficients, the standard application of implicit RK methods is generally not superconvergent. To reestablish superconvergence projected RK methods and partitioned RK ...

متن کامل

Iterative Solution of Nonlinear Equations for Spark Methods Applied to Daes

We consider a broad class of systems of implicit differential-algebraic equations (DAEs) including the equations of mechanical systems with holonomic and nonholonomic constraints. We approximate numerically the solution to these DAEs by applying a class of super partitioned additive Runge-Kutta (SPARK) methods. Several properties of the SPARK coefficients, satisfied by the combination of Lobatt...

متن کامل

Implicit Runge–kutta Methods for Transferable Differential-algebraic Equations

The numerical solution of transferable differential-algebraic equations (DAE’s) by implicit Runge–Kutta methods (IRK) is studied. If the matrix of coefficients of an IRK is nonsingular then the arising systems of nonlinear equations are uniquely solvable. These methods are proved to be stable if an additional contractivity condition is satisfied. For transferable DAE’s with smooth solution we g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003